A Fixed Point Approach to the Stability of an Equation of the Square Spiral
نویسنده
چکیده
Cădariu and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of a functional equation of the square root spiral, f (√ r2 + 1 ) = f(r)+ tan−1(1/r).
منابع مشابه
A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملHyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
متن کاملOn the Superstability and Stability of the Pexiderized Exponential Equation
The main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe Pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $S$ to an arbitrary unitary complex Banachalgebra and also $psi: S^{2}rightarrow [0,infty)$ is afunction. Fur...
متن کاملA FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007